
Audit Report
Belifex

February 2023

Type BEP20
Network BSC
Address 0x75b2fdd95418e093fca7db858b36549e5e412076
Audited by © cyberscope

Belifex Token Audit 1

Table of Contents
Table of Contents 1

Review 3

Audit Updates 3

Source Files 4

Analysis 6

ST - Stops Transactions 7

Description 7

Recommendation 7

Diagnostics 8

PTRP - Potential Transfer Revert Propagation 9

Description 9

Recommendation 9

PVC - Price Volatility Concern 10

Description 10

Recommendation 10

L04 - Conformance to Solidity Naming Conventions 11

Description 11

Recommendation 12

L09 - Dead Code Elimination 13

Description 13

Recommendation 13

L12 - Using Variables before Declaration 15

Description 15

Recommendation 15

L14 - Uninitialized Variables in Local Scope 16

Description 16

Recommendation 16

L16 - Validate Variable Setters 17

Description 17

Recommendation 17

L19 - Stable Compiler Version 18

Description 18

Belifex Token Audit 2

Recommendation 18

L20 - Succeeded Transfer Check 19

Description 19

Recommendation 19

Functions Analysis 20

Inheritance Graph 32

Flow Graph 33

Summary 34

Disclaimer 35

About Cyberscope 36

Belifex Token Audit 3

Review

Contract Name DividendTokenWithAntibot

Compiler Version v0.8.13+commit.abaa5c0e

Optimization 200 runs

Explorer https://bscscan.com/address/0x75b2fdd95418e093fca7db858b36549e5
e412076

Address 0x75b2fdd95418e093fca7db858b36549e5e412076

Network BSC

Symbol BEFX

Decimals 18

Total Supply 100,000,000

Audit Updates

Initial Audit 19 Feb 2023

https://bscscan.com/address/0x75b2fdd95418e093fca7db858b36549e5e412076
https://bscscan.com/address/0x75b2fdd95418e093fca7db858b36549e5e412076

Belifex Token Audit 4

Source Files

Filename SHA256

@openzeppelin/contracts-upgradeable/access/Ow
nableUpgradeable.sol

f0cbb88e6cbc994b565645eabd4320d27
d529c7f1f4b3abb5fc263f3961c0a24

@openzeppelin/contracts-upgradeable/proxy/utils/
Initializable.sol

6e058aaee8c641107b209b62c34d484f2f
125a44ecb66f7204a701614dfc1d68

@openzeppelin/contracts-upgradeable/token/ERC
20/ERC20Upgradeable.sol

a439a162881f7f36131b1fe307aa2a8dc9
8ac3f01ac121ff92fbbc25d0d216b5

@openzeppelin/contracts-upgradeable/token/ERC
20/extensions/IERC20MetadataUpgradeable.sol

68bcca423fc72ec9625e219c9e36306c7
26a347e43f3711467c579bd3f6500c8

@openzeppelin/contracts-upgradeable/token/ERC
20/IERC20Upgradeable.sol

db1d80b38061ba675444e6ad861a621d
99666042950278d6cdeae9a108afdd17

@openzeppelin/contracts-upgradeable/utils/Addre
ssUpgradeable.sol

44edc4d7099c781d11421cea2d82a5294
8e738f5f6191c8ad01dfc0f9858549c

@openzeppelin/contracts-upgradeable/utils/Conte
xtUpgradeable.sol

5fb301961e45cb482fe4e05646d2f529aa
449fe0e90c6671475d6a32356fa2d4

@openzeppelin/contracts/access/Ownable.sol 75e3c97011e75627ffb36f4a2799a4e887
e1a3e27ed427490e82d7b6f51cc5c9

@openzeppelin/contracts/proxy/Clones.sol 59fb8ba872adf90edb8a2e37ba16199c9a
7625b8a155016e2b6aed0c592284d4

@openzeppelin/contracts/token/ERC20/ERC20.sol f7831910f2ed6d32acff6431e5998baf50e
4a00121303b27e974aab0ec637d79

@openzeppelin/contracts/token/ERC20/extension
s/IERC20Metadata.sol

af5c8a77965cc82c33b7ff844deb982616
6689e55dc037a7f2f790d057811990

@openzeppelin/contracts/token/ERC20/IERC20.so
l

c2b06bb4572bb4f84bfc5477dadc0fcc49
7cb66c3a1bd53480e68bedc2e154a6

@openzeppelin/contracts/utils/Context.sol 1458c260d010a08e4c20a4a517882259a
23a4baa0b5bd9add9fb6d6a1549814a

Belifex Token Audit 5

@openzeppelin/contracts/utils/math/SafeMath.sol 15941f3904992a62ed117e93d9e2d5c4c
22bd09a7ff97fdd5f49273cf09703ac

contracts/Tokens/DividendTokens/DividendToken
DividendTracker.sol

e29bf0b95c709f7c564e72de2b8ac85746
92e1dbcfb7306c6908141b06efc2a6

contracts/Tokens/DividendTokens/DividendToken
WithAntibot.sol

8c1ad0ef06f5b7feb10d271e1e94ba01dc
25f55cf4c53092ecf25a6065d14fe0

contracts/Tokens/interfaces/IUniswapV2Factory.s
ol

a63a844ad84f9df76c9822e73adf2f66b6e
0c100eece0c4af5103734cb3f4698

contracts/Tokens/interfaces/IUniswapV2Pair.sol d2a719db1ef447e334a57cba344e05ea8
5ec3fb6766ef717b4448fc4a5032634

contracts/Tokens/interfaces/IUniswapV2Router02.
sol

5a8d4b8843a4ceb469d39bc30a3e7d528
d8fabee8aa2f75fc00365d2c7bf90bb

contracts/Tokens/libs/IterableMapping.sol 1372c0015c643617e2ca65a6aaeccfba28
39dcb0be3a58e96aa69fbd6046eaad

contracts/Tokens/libs/SafeMathInt.sol 7f1fe79198fb6d30490321221e656bbf8f7
67f724339abfb3c23469a7c1b571d

contracts/Tokens/libs/SafeMathUint.sol 22e1e7ff4e22dc8a599c9ed317acc2c70e
213da90029ffc936eac5febf2caa34

Belifex Token Audit 6

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Unresolved

⬤ OCTD Transfers Contract's Tokens Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ ULTW Transfers Liquidity to Team Wallet Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

Belifex Token Audit 7

ST - Stops Transactions

Criticality Medium

Location contracts/Tokens/DividendTokens/DividendTokenWithAntibot.sol#L245

Status Unresolved

Description

The contract owner has the authority to stop the transactions for all users excluding
the owner. The owner may take advantage of it by setting the maxWallet or
maxTransactionAmount to a very low value like 1. As a result, the transaction limit
will be so decreased that it essentially not allow the user to trade.

function updateMaxWallet(uint256 _maxWallet) external onlyOwner {

require(_maxWallet>0, "maxWallet>0");

emit UpdateMaxWallet(_maxWallet, maxWallet);

maxWallet = _maxWallet;

}

function updateMaxTransactionAmount(uint256 _maxTransactionAmount)

external

onlyOwner

{

require(_maxTransactionAmount>0, "maxTransactionAmount>0");

maxTransactionAmount = _maxTransactionAmount;

emit UpdateMaxTransactionAmount(_maxTransactionAmount,

maxTransactionAmount);

}

Recommendation

The contract could embody a check for not allowing setting the maxWallet or
maxTransactionAmount less than a reasonable amount. A suggested
implementation could check that the maximum amount should be more than a fixed
percentage of the total supply. The team should carefully manage the private keys
of the owner’s account. We strongly recommend a powerful security mechanism
that will prevent a single user from accessing the contract admin functions. That risk
can be prevented by temporarily locking the contract or renouncing ownership.

Belifex Token Audit 8

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ PTRP Potential Transfer Revert Propagation Unresolved

⬤ PVC Price Volatility Concern Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L12 Using Variables before Declaration Unresolved

⬤ L14 Uninitialized Variables in Local Scope Unresolved

⬤ L16 Validate Variable Setters Unresolved

⬤ L19 Stable Compiler Version Unresolved

⬤ L20 Succeeded Transfer Check Unresolved

Belifex Token Audit 9

PTRP - Potential Transfer Revert Propagation

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenDividendTracker.sol#L319

Status Unresolved

Description

The contract sends funds to a _marketingWalletAddress as part of the transfer
flow. This address can either be a wallet address or a contract. If the address
belongs to a contract then it may revert from incoming payment. As a result, the
error will propagate to the token’s contract and revert the transfer.

function setMarketingWallet(address payable wallet) external onlyOwner {

require(_marketingWalletAddress!=wallet, "already");

emit MarketingWalletUpdated(_marketingWalletAddress, wallet);

_marketingWalletAddress = wallet;

}

Recommendation

The contract should tolerate the potential revert from the underlying contracts when
the interaction is part of the main transfer flow. This could be archived by not
allowing set contract addresses or by sending the funds in a non-revertable way.

Belifex Token Audit 10

PVC - Price Volatility Concern

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenDividendTracker.sol#L239

Status Unresolved

Description

The contract accumulates tokens from the taxes to swap them for ETH. The variable
swapTokensAtAmount sets a threshold where the contract will trigger the swap
functionality. If the variable is set to a big number, then the contract will swap a
huge amount of tokens for ETH.

It is important to note that the price of the token representing it, can be highly
volatile. This means that the value of a price volatility swap involving Ether could
fluctuate significantly at the triggered point, potentially leading to significant price
volatility for the parties involved.

function setSwapTokensAtAmount(uint256 amount) external onlyOwner {

require(amount > 0, "swapTokensAtAmount > 0");

emit UpdateSwapTokensAtAmount(amount, swapTokensAtAmount);

swapTokensAtAmount = amount;

}

Recommendation

The contract could ensure that it will not sell more than a reasonable amount of
tokens in a single transaction. A suggested implementation could check that the
maximum amount should be less than a fixed percentage of the total supply. Hence,
the contract will guarantee that it cannot accumulate a huge amount of tokens in
order to sell them.

Belifex Token Audit 11

L04 - Conformance to Solidity Naming
Conventions

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenWithAntibot.sol#L30,57,245,251,2
85,325,332,333,354,355,376,377
contracts/Tokens/DividendTokens/DividendTokenDividendTracker.sol#L80,100,101,
102,103,162,169,181,195,370

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity
code. Adhering to a style guide can help improve the readability and maintainability
of the Solidity code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in

lowercase (e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

Belifex Token Audit 12

IPancakeCaller public constant pancakeCaller =

IPancakeCaller(0x617715A9Bf6dD62D1Beb70F29914Fcf821933B39)

address public _marketingWalletAddress

uint256 _maxWallet

uint256 _maxTransactionAmount

address _baseTokenForPair

address _tokenForMarketingFee

uint16 _sellLiquidityFee

uint16 _buyLiquidityFee

uint16 _sellMarketingFee

uint16 _buyMarketingFee

uint16 _sellRewardFee

uint16 _buyRewardFee

uint256 internal constant magnitude = 2**128

...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the
readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation
https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

Belifex Token Audit 13

L09 - Dead Code Elimination

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenDividendTracker.sol#L214

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or
reached during normal contract execution. Dead code can occur for a variety of
reasons, such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can
also increase the size of the contract and the cost of deploying and interacting with
it.

function _transfer(

address from,

address to,

uint256 value

) internal virtual override {

require(false);

...

.toInt256Safe();

magnifiedDividendCorrections[from] =

magnifiedDividendCorrections[from]

.add(_magCorrection);

magnifiedDividendCorrections[to] =

magnifiedDividendCorrections[to].sub(

_magCorrection

);

}

Recommendation

Belifex Token Audit 14

To avoid creating dead code, it's important to carefully consider the logic and flow
of the contract and to remove any code that is not needed or that is never executed.
This can help improve the clarity and efficiency of the contract.

Belifex Token Audit 15

L12 - Using Variables before Declaration

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenWithAntibot.sol#L653,654,655

Status Unresolved

Description

The contract is using a variable before the declaration. This is usually happening
either if it has not been declared yet or if the variable has been declared in a
different scope. It is not a good practice to use a local variable before it has been
declared.

uint256 iterations

uint256 claims

uint256 lastProcessedIndex

Recommendation

By declaring local variables before using them, contract ensures that it operates
correctly. It's important to be aware of this rule when working with local variables,
as using a variable before it has been declared can lead to unexpected behavior
and can be difficult to debug.

Belifex Token Audit 16

L14 - Uninitialized Variables in Local Scope

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenWithAntibot.sol#L607,608,609,65
3,654,655

Status Unresolved

Description

Using an uninitialized local variable can lead to unpredictable behavior and
potentially cause errors in the contract. It's important to always initialize local
variables with appropriate values before using them.

uint256 _liquidityFee

uint256 _marketingFee

uint256 _rewardFee

uint256 iterations

uint256 claims

uint256 lastProcessedIndex

Recommendation

By initializing local variables before using them, the contract ensures that the
functions behave as expected and avoid potential issues.

Belifex Token Audit 17

L16 - Validate Variable Setters

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenWithAntibot.sol#L287

Status Unresolved

Description

The contract performs operations on variables that have been configured on
user-supplied input. These variables are missing of proper check for the case where
a value is zero. This can lead to problems when the contract is executed, as certain
actions may not be properly handled when the value is zero.

baseTokenForPair=_baseTokenForPair

Recommendation

By adding the proper check, the contract will not allow the variables to be
configured with zero value. This will ensure that the contract can handle all possible
input values and avoid unexpected behavior or errors. Hence, it can help to prevent
the contract from being exploited or operating unexpectedly.

Belifex Token Audit 18

L19 - Stable Compiler Version

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenDividendTracker.sol#L2

Status Unresolved

Description

The ^ symbol indicates that any version of Solidity that is compatible with the
specified version (i.e., any version that is a higher minor or patch version) can be
used to compile the contract. The version lock is a mechanism that allows the
author to specify a minimum version of the Solidity compiler that must be used to
compile the contract code. This is useful because it ensures that the contract will be
compiled using a version of the compiler that is known to be compatible with the
code.

pragma solidity ^0.8.13;

Recommendation

The team is advised to lock the pragma to ensure the stability of the codebase. The
locked pragma version ensures that the contract will not be deployed with an
unexpected version. An unexpected version may produce vulnerabilities and
undiscovered bugs. The compiler should be configured to the lowest version that
provides all the required functionality for the codebase. As a result, the project will
be compiled in a well-tested LTS (Long Term Support) environment.

Belifex Token Audit 19

L20 - Succeeded Transfer Check

Criticality Minor / Informative

Location contracts/Tokens/DividendTokens/DividendTokenWithAntibot.sol#L677,687

Status Unresolved

Description

According to the ERC20 specification, the transfer methods should be checked if
the result is successful. Otherwise, the contract may wrongly assume that the
transfer has been established.

IERC20(rewardToken).transfer(_marketingWalletAddress, newBalance)

IERC20(baseTokenForPair).transfer(_marketingWalletAddress, newBalance)

Recommendation

The contract should check if the result of the transfer methods is successful. The
team is advised to check the SafeERC20 library from the Openzeppelin library.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

Belifex Token Audit 20

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

OwnableUpgra
deable

Implementation Initializable,
ContextUpg
radeable

__Ownable_init Internal ✓ onlyInitializing

__Ownable_init_unchained Internal ✓ onlyInitializing

owner Public -

renounceOwnership Public ✓ onlyOwner

transferOwnership Public ✓ onlyOwner

_transferOwnership Internal ✓

Initializable Implementation

_isConstructor Private

ERC20Upgrad
eable

Implementation Initializable,
ContextUpg
radeable,
IERC20Upgr
adeable,
IERC20Meta
dataUpgrad
eable

__ERC20_init Internal ✓ onlyInitializing

__ERC20_init_unchained Internal ✓ onlyInitializing

name Public -

symbol Public -

decimals Public -

totalSupply Public -

balanceOf Public -

Belifex Token Audit 21

transfer Public ✓ -

allowance Public -

approve Public ✓ -

transferFrom Public ✓ -

increaseAllowance Public ✓ -

decreaseAllowance Public ✓ -

_transfer Internal ✓

_mint Internal ✓

_burn Internal ✓

_approve Internal ✓

_spendAllowance Internal ✓

_beforeTokenTransfer Internal ✓

_afterTokenTransfer Internal ✓

IERC20Metada
taUpgradeable

Interface IERC20Upgr
adeable

name External -

symbol External -

decimals External -

IERC20Upgrad
eable

Interface

totalSupply External -

balanceOf External -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

AddressUpgra
deable

Library

Belifex Token Audit 22

isContract Internal

sendValue Internal ✓

functionCall Internal ✓

functionCall Internal ✓

functionCallWithValue Internal ✓

functionCallWithValue Internal ✓

functionStaticCall Internal

functionStaticCall Internal

verifyCallResult Internal

ContextUpgra
deable

Implementation Initializable

__Context_init Internal ✓ onlyInitializing

__Context_init_unchained Internal ✓ onlyInitializing

_msgSender Internal

_msgData Internal

Ownable Implementation Context

Public ✓ -

owner Public -

renounceOwnership Public ✓ onlyOwner

transferOwnership Public ✓ onlyOwner

_transferOwnership Internal ✓

Clones Library

clone Internal ✓

cloneDeterministic Internal ✓

predictDeterministicAddress Internal

predictDeterministicAddress Internal

Belifex Token Audit 23

ERC20 Implementation Context,
IERC20,
IERC20Meta
data

Public ✓ -

name Public -

symbol Public -

decimals Public -

totalSupply Public -

balanceOf Public -

transfer Public ✓ -

allowance Public -

approve Public ✓ -

transferFrom Public ✓ -

increaseAllowance Public ✓ -

decreaseAllowance Public ✓ -

_transfer Internal ✓

_mint Internal ✓

_burn Internal ✓

_approve Internal ✓

_spendAllowance Internal ✓

_beforeTokenTransfer Internal ✓

_afterTokenTransfer Internal ✓

IERC20Metada
ta

Interface IERC20

name External -

symbol External -

decimals External -

IERC20 Interface

totalSupply External -

Belifex Token Audit 24

balanceOf External -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

Context Implementation

_msgSender Internal

_msgData Internal

SafeMath Library

tryAdd Internal

trySub Internal

tryMul Internal

tryDiv Internal

tryMod Internal

add Internal

sub Internal

mul Internal

div Internal

mod Internal

sub Internal

div Internal

mod Internal

DividendPayin
gTokenInterfac
e

Interface

dividendOf External -

withdrawDividend External ✓ -

Belifex Token Audit 25

DividendPayin
gTokenOptiona
lInterface

Interface

withdrawableDividendOf External -

withdrawnDividendOf External -

accumulativeDividendOf External -

DividendPayin
gToken

Implementation ERC20Upgr
adeable,
OwnableUp
gradeable,
DividendPay
ingTokenInt
erface,
DividendPay
ingTokenOp
tionalInterfa
ce

__DividendPayingToken_init Internal ✓ onlyInitializing

distributeCAKEDividends Public ✓ onlyOwner

withdrawDividend Public ✓ -

_withdrawDividendOfUser Internal ✓

dividendOf Public -

withdrawableDividendOf Public -

withdrawnDividendOf Public -

accumulativeDividendOf Public -

_transfer Internal ✓

_mint Internal ✓

_burn Internal ✓

_setBalance Internal ✓

DividendToken
DividendTrack
er

Implementation OwnableUp
gradeable,
DividendPay
ingToken

Public ✓ -

initialize External ✓ initializer

Belifex Token Audit 26

_transfer Internal

withdrawDividend Public -

excludeFromDividends External ✓ onlyOwner

isExcludedFromDividends Public -

updateClaimWait External ✓ onlyOwner

updateMinimumTokenBalanceForDivid
ends

External ✓ onlyOwner

getLastProcessedIndex External -

getNumberOfTokenHolders External -

getAccount Public -

getAccountAtIndex Public -

canAutoClaim Private

setBalance External ✓ onlyOwner

process Public ✓ -

processAccount Public ✓ onlyOwner

IGemAntiBot Interface

setTokenOwner External ✓ -

onPreTransferCheck External ✓ -

IPancakeCaller Interface

swapExactTokensForTokensSupportin
gFeeOnTransferTokens

External ✓ -

DividendToken
WithAntibot

Implementation ERC20,
Ownable

Public Payable ERC20

External Payable -

setUsingAntiBot External ✓ onlyOwner

setSwapTokensAtAmount External ✓ onlyOwner

updateMaxWallet External ✓ onlyOwner

Belifex Token Audit 27

updateMaxTransactionAmount External ✓ onlyOwner

updateDividendTracker Public ✓ onlyOwner

updateUniswapV2Pair External ✓ onlyOwner

updateUniswapV2Router Public ✓ onlyOwner

excludeFromFees Public ✓ onlyOwner

decimals Public -

setMarketingWallet External ✓ onlyOwner

updateTokenForMarketingFee External ✓ onlyOwner

updateLiquidityFee External ✓ onlyOwner

updateMarketingFee External ✓ onlyOwner

updateRewardFee External ✓ onlyOwner

setAutomatedMarketMakerPair Public ✓ onlyOwner

_setAutomatedMarketMakerPair Private ✓

excludeFromMaxTransactionAmount External ✓ onlyOwner

updateGasForProcessing Public ✓ onlyOwner

updateClaimWait External ✓ onlyOwner

getClaimWait External -

updateMinimumTokenBalanceForDivid
ends

External ✓ onlyOwner

getMinimumTokenBalanceForDividend
s

External -

getTotalDividendsDistributed External -

isExcludedFromFees Public -

withdrawableDividendOf Public -

dividendTokenBalanceOf Public -

excludeFromDividends External ✓ onlyOwner

isExcludedFromDividends Public -

getAccountDividendsInfo External -

getAccountDividendsInfoAtIndex External -

processDividendTracker External ✓ -

claim External ✓ -

Belifex Token Audit 28

getLastProcessedIndex External -

getNumberOfDividendTokenHolders External -

_transfer Internal ✓

swapAndSendToFee Private ✓

swapAndLiquify Private ✓

swapTokensForBaseToken Private ✓

swapTokensForCake Private ✓

addLiquidity Private ✓

swapAndSendDividends Private ✓

IUniswapV2Fa
ctory

Interface

feeTo External -

feeToSetter External -

getPair External -

allPairs External -

allPairsLength External -

createPair External ✓ -

setFeeTo External ✓ -

setFeeToSetter External ✓ -

IUniswapV2Pai
r

Interface

name External -

symbol External -

decimals External -

totalSupply External -

balanceOf External -

allowance External -

approve External ✓ -

transfer External ✓ -

Belifex Token Audit 29

transferFrom External ✓ -

DOMAIN_SEPARATOR External -

PERMIT_TYPEHASH External -

nonces External -

permit External ✓ -

MINIMUM_LIQUIDITY External -

factory External -

token0 External -

token1 External -

getReserves External -

price0CumulativeLast External -

price1CumulativeLast External -

kLast External -

mint External ✓ -

burn External ✓ -

swap External ✓ -

skim External ✓ -

sync External ✓ -

initialize External ✓ -

IUniswapV2Ro
uter01

Interface

factory External -

WETH External -

addLiquidity External ✓ -

addLiquidityETH External Payable -

removeLiquidity External ✓ -

removeLiquidityETH External ✓ -

removeLiquidityWithPermit External ✓ -

removeLiquidityETHWithPermit External ✓ -

Belifex Token Audit 30

swapExactTokensForTokens External ✓ -

swapTokensForExactTokens External ✓ -

swapExactETHForTokens External Payable -

swapTokensForExactETH External ✓ -

swapExactTokensForETH External ✓ -

swapETHForExactTokens External Payable -

quote External -

getAmountOut External -

getAmountIn External -

getAmountsOut External -

getAmountsIn External -

IUniswapV2Ro
uter02

Interface IUniswapV2
Router01

removeLiquidityETHSupportingFeeOn
TransferTokens

External ✓ -

removeLiquidityETHWithPermitSuppor
tingFeeOnTransferTokens

External ✓ -

swapExactTokensForTokensSupportin
gFeeOnTransferTokens

External ✓ -

swapExactETHForTokensSupportingF
eeOnTransferTokens

External Payable -

swapExactTokensForETHSupportingF
eeOnTransferTokens

External ✓ -

IterableMappin
g

Library

get Public -

getIndexOfKey Public -

getKeyAtIndex Public -

size Public -

set Public ✓ -

remove Public ✓ -

Belifex Token Audit 31

SafeMathInt Library

mul Internal

div Internal

sub Internal

add Internal

abs Internal

toUint256Safe Internal

SafeMathUint Library

toInt256Safe Internal

Belifex Token Audit 32

Inheritance Graph

Belifex Token Audit 33

Flow Graph

Belifex Token Audit 34

Summary

There are some functions that can be abused by the owner like stop
transactions. A multi-wallet signing pattern will provide security against
potential hacks. Temporarily locking the contract or renouncing
ownership will eliminate all the contract threats. There is also a limit of
max 20% fees.

Belifex Token Audit 35

Disclaimer
The information provided in this report does not constitute investment, financial or
trading advice and you should not treat any of the document's content as such. This
report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes nor may copies be delivered to any other person other than the
Company without Cyberscope’s prior written consent. This report is not nor should
be considered an “endorsement” or “disapproval” of any particular project or team.
This report is not nor should be regarded as an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts
Cyberscope to perform a security assessment. This document does not provide any
warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors'
business, business model or legal compliance. This report should not be used in
any way to make decisions around investment or involvement with any particular
project. This report represents an extensive assessment process intending to help
our customers increase the quality of their code while reducing the high level of risk
presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk
Cyberscope’s position is that each company and individual are responsible for their
own due diligence and continuous security Cyberscope’s goal is to help reduce the
attack vectors and the high level of variance associated with utilizing new and
consistently changing technologies and in no way claims any guarantee of security
or functionality of the technology we agree to analyze. The assessment services
provided by Cyberscope are subject to dependencies and are under continuing
development. You agree that your access and/or use including but not limited to
any services reports and materials will be at your sole risk on an as-is where-is and
as-available basis Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. The assessment reports could
include false positives false negatives and other unpredictable results. The services
may access and depend upon multiple layers of third parties.

Belifex Token Audit 36

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the
vision to make web3.0 a safer place for investors and developers. Since its launch,
it has worked with thousands of projects and is estimated to have secured tens of
millions of investors’ funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and
has built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

